Stereospecific Synthesis of *â***-D-Fructofuranosides Using the Internal Aglycon Delivery Approach**

Christian Krog-Jensen and Stefan Oscarson*

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden

Received April 29, 1996

Syntheses of fructofuranosides using fructofuranosyl donors are not very frequent. Only a small number of papers have been published on this subject.¹⁻⁴ Although the methods used generally give high yields of fructofuranosides, a definitive drawback is that exclusively the α -fructofuranoside (when a participating group at the 3-position is used) or a mixture of α - and β -anomers (if a nonparticipating group is used) are obtained. A further complication is that these anomeric mixtures often are impossible or difficult to separate by chromatography. Since most fructofuranosides found in nature are β -linked,⁵ the need for a stereospecific *â*-glycosylation method for fructofuranosides is obvious.

In a program directed toward synthesis of capsular polysaccharides (CPS:s) from *Haemophilus influenzae*, we became interested in the synthesis of *â*-fructofuranosides, since this is a motif in the type e CPS. 6 Our earlier successful experience with thioglycosides as glycoside donors led us to synthesize and try this type of donors in the fructofuranosidic field as a continuation of the work of Kochetkov and co-workers.1,2 Although exceptionally high yields of fructofuranosides were obtained, the best ratio of β - to α -linked product obtained was 1.6/1 in inseparable mixtures.4

Since 1,2-*cis*-pyranosides, especially the difficult *â*-D*manno*-configuration and also the α-D-*gluco*-configuration, have successfully been synthesized using the internal aglycon delivery approach, $7-11$ we decided to try this method with furanosides. Of the existing variation of silicon and carbon acetals used earlier, the *p*-methoxybenzaldehyde acetal, introduced by Ito and Ogawa,¹⁰ seems to be the most promising, especially in oligosaccharide synthesis.¹¹ Thus, the key thioglycoside ethyl 1,4,6-tri-*O*-benzyl-3-*O*-(4-methoxybenzyl)-2-thio-α-D-fructofuranoside (4 α) was synthesized together with its β -anomer (Scheme 1). The known,¹² crystalline orthoester 1

- (1) Balan, N. F.; Backinowsky, L. V.; Betaneli, V. I.; Kochetkov, N. K. *Bioorg. Khim.* **1981**, *7*, 1566-1577.
- (2) Backinowsky, L. V.; Balan, N. F.; Betaneli, V. I.; Kochetkov, N. K. *Carbohydr. Res.* **1982**, *99*, 189-193.
- (3) Müller, T.; Schneider, R.; Schmidt, R. R. *Tetrahedron Lett*. **1994**, *27*, 4763-4766.
- (4) Krog-Jensen, C.; Oscarson, S. *J. Org. Chem*. **1996**, *61*, 1234- 1238.
- (5) Lindberg, B. *Adv. Carbohydr. Chem. Biochem.* **1990**, *48*, 279- 318.
- (6) Branefors-Helander, P.; Kenne, L.; Lindberg, B.; Petersson, K.; Unger, P. *Carbohydr. Res.* **1981**, *88*, 77-84.
- (7) (a) Barresi, F.; Hindsgaul, O. *J. Am. Chem. Soc.***1991**, *113*, 9376- 9377; (b) *Synlett* **1992**, 759-761; (c) *Can. J. Chem.* **1994**, *72*, 1447- 1465.

- (9) (a) Bols, M. *J. Chem. Soc., Chem. Commun.***1992**, 913-914; (b) *J. Chem. Soc., Chem. Commun.* **1993**, 791-792; (c) *Acta Chem. Scand.* **1993**, *47*, 829-834.
- (10) Ito, Y.; Ogawa, T. *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 1765- 1767.
- (11) Dan, A.; Ito, Y.; Ogawa, T. *J. Org. Chem*. **1995**, *60*, 4680- 4681.

^a Key: (a) NaOMe, MeOH, -15 °C; (b) BnBr, NaH, DMF; (c) TMSOTf, EtSH, CH₂Cl₂; (d) NaOMe, MeOH; (e) MBnBr, NaH, DMF.

was deacylated using sodium methoxide and then benzylated to give **2** in an overall yield of 64%. Rearrangement of the anomeric orthoester using trimethylsilyl trifluoromethylsulfonate in the presence of a large excess of ethyl mercaptan (∼100 equiv) gave ethyl 1,4,6-tri-*O*benzyl-3-*O*-benzoyl-2-thio-D-fructofuranoside as an inseparable α/β -mixture. Debenzoylation of this mixture afforded the 3-OH compounds, which could easily be separated by silica gel chromatography to give pure 3α and 3β in overall yields of 74 and 22%, respectively, from **2**. Then *p*-methoxybenzylation gave the key intermediates **4** α (91%) and **4** β (68%), ready for acetal tethering with different aglycons.

Two different acceptors, both used in the earlier work,⁴ were chosen as model compounds, one primary alcohol, methyl 2,3,4-tri-*O*-benzyl-α-D-mannopyranoside (**5**), and one secondary, 2-(4-nitrophenyl)ethyl 2-azido-4,6-*O*-benzylidene-2-deoxy-*â*-D-mannopyranoside (**8**), the latter of interest for the synthesis of the *Haemophilus influenzae* type e CPS. When a slight modification of the published procedure was used, 11 the two intermediate acetals **6** and **9** were formed in high yields, according to TLC, when 4α was reacted with DDQ in the presence of **5** or **8**, respectively (Schemes 2 and 3). No characterization of the tethered acceptor-donor acetals **6** and **9** were performed, but immediately after workup they were activated by a promoter. The addition of dimethyl(methylthio)sulfonium trifluoromethanesulfonate¹³ (DMTST) to a solution of either of the two acetals in CH_2Cl_2 gave a main product, which was found to be the pure β -fructofuranosyl disaccharide, no α -product was isolated. **6** gave **7** in 77% yield and **9** gave **10** in 76% overall yield from 4α (Schemes 2 and 3). Methyl trifluoromethanesulfonate 11 gave lower yields, especially with the primary acceptor **5** (31% yield of **7**, 59% yield of **10**).

The *â*-furanosyl configuration in disaccharide products **7** and **10** was assigned using the 13C chemical shift of the anomeric carbon. *O*-*â*-linked fructofuranosides give resonance at a higher field (∼103-105 ppm) than the corresponding α-anomer (\sim 107-109 ppm).¹⁴ The C-2' shift in derivative **7** was 104.0 ppm, whereas that in disaccharide **10** was found to be 105.0 ppm. These values can also be compared to the values of the corresponding $3'$ -*O*-benzyl derivatives, obtained earlier as α/β -mixtures, which were 107.9/104.2 ppm and 108.9/104.8

⁽⁸⁾ Stork, K.; Kim, G. *J. Am. Chem. Soc*. **1992**, *114*, 1087-1088.

⁽¹²⁾ Helferich, B.; Bottenbruch, L. *Chem. Ber.* **1953**, *86*, 651- 657.

⁽¹³⁾ Fügedi, P.; Garegg, P. J. *Carbohydr. Res.* **1986**, *149*, C9-C12.

⁽¹⁴⁾ Angyal, S. J.; Bethell, G. S. *Aust. J. Chem*. **1976**, *29*, 1249- 1265.

ppm, respectively.4 Furthermore, benzylation of compound **7** gave a derivative with NMR identical to the assigned *â*-part of the previously synthesized 3′-*O*-benzyl derivative.

In conclusion, the intricate problem of synthesizing *â*-D-fructofuranosides (and probably other 1,2-*cis*-furanosides) can be solved by using an internal glycosidation procedure.

Acknowledgements. We thank Professor Per J. Garegg for his interest in this work and the Swedish Natural Science Reserch Council for financial support.

Supporting Information Available: Experimental procedures and characterization data for compounds **2**, **4**, **7**, and **10** (3 pages).

JO960776B